On Weyl-Heisenberg orbits of equiangular lines

نویسنده

  • Mahdad Khatirinejad
چکیده

An element z ∈CPd−1 is called fiducial if {gz : g ∈G} is a set of lines with only one angle between each pair, where G∼= Zd × Zd is the one-dimensional finite Weyl-Heisenberg group modulo its centre. We give a new characterization of fiducial vectors. Using this characterization, we show that the existence of almost flat fiducial vectors implies the existence of certain cyclic difference sets. We also prove that the construction of fiducial vectors in prime dimensions 7 and 19 due to Appleby (J. Math. Phys. 46(5):052107, 2005) does not generalize to other prime dimensions (except for possibly a set with density zero). Finally, we use our new characterization to construct fiducial vectors in dimension 7 and 19 whose coordinates are real.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some remarks on Heisenberg frames and sets of equiangular lines

We consider the long standing problem of constructing d equiangular lines in C, i.e., finding a set of d unit vectors (φj) in C d with |〈φj , φk〉| = 1 √ d + 1 , j 6= k. Such ‘equally spaced configurations’ have appeared in various guises, e.g., as complex spherical 2–designs, equiangular tight frames, isometric embeddings `2(d) → `4(d), and most recently as SICPOVMs in quantum measurement theor...

متن کامل

Generating Ray Class Fields of Real Quadratic Fields via Complex Equiangular Lines

Let K be a real quadratic field. For certain K with sufficiently small discriminant we produce explicit unit generators for specific ray class fields of K using a numerical method that arose in the study of complete sets of equiangular lines in C (known in quantum information as symmetric informationally complete measurements or sics). The construction in low dimensions suggests a general recip...

متن کامل

p-MECHANICS AND DE DONDER–WEYL THEORY

The orbit method of Kirillov is used to derive the p-mechanical brackets [25]. They generate the quantum (Moyal) and classic (Poisson) brackets on respective orbits corresponding to representations of the Heisenberg group. The extension of p-mechanics to field theory is made through the De Donder–Weyl Hamiltonian formulation. The principal step is the substitution of the Heisenberg group with G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008